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Delinearization of Quantum Logic 
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The algebraic structure of the set of elementary observables of a delinearized 
quantal theory is described. As the delinearization procedure provides a kind of 
classical representation for any quantal theory, its relation to the traditional 
hypothesis of hidden variables is discussed. 

1. INTRODUCTION 

It is known that any order-unit normed space admits an isometric linear 
functional representation as a linear subspace of a space of real continuous 
functions over a compact set [the Kadison representation theorem (Alfsen, 
1971 ; Asimov and Ellis, 1980). The question of a physical interpretation 
of this representation arises in a natural way if we take into account the 
fundamental position occupied by order-unit Banach spaces in any statistical 
physical theory in its operational (or "convex") generalization [see, e.g., 
Lahti and Bugajski (1985) and references therein]. Two such interpretations, 
closely related to one another, have been suggested recently. Namely the 
Kadison map can be seen as the delinearization of a quantal theory, i.e., as 
a formal description of the transformation from a quantal theory to its 
nonlinear extension (Bugajski, 1991). On the other hand, the dual Kadison 
map provides a statistical interpretation for quantal mixed states in terms of 
classical probability measures, so the Kadison representation can be placed 
among phase-space models of quantum theories (Bugajski, 1993; Busch 
et aL, 1993). 

Once we have ascribed a physical meaning to the Kadison represen- 
tation, we should explain how it is possible that we obtain a kind of classical 
embedding of a quantal theory in spite of the theorems forbidding "hidden 
variables" (Zierler and Schlesinger, 1965). One easily guesses that it is 
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possible only at the price of destroying the elaborated structure of  the quan- 
tum logic. In this way we come to the intriguing question: how does the 
quantum logic behave under the delinearization? The main goal of this paper 
is to report a preliminary study of algebraic aspects of the delinearization 
of quantum logic. 

2. NONLINEAR EXTENSION OF QUANTUM LOGIC 

Let W be an order-unit normed Banach space with e the order unit and 
o the origin. If Wis one of the basic Banach spaces underlying an operational 
statistical theory, the order interval [o, e]w:={as WIo<_a<_e} is the set 
of effects of the theory. An observable related to W is a mapping 
A: B(~) --+ [o, e]w, where B(I~) is the o--field of Borel subsets of the real line 
I~, such that A(~) = e, and for any sequence X1, X2 . . . .  of mutually disjoint 
Borel sets, A([,_)Xn)=~A(Xn) with the right-hand side converging in the 
weak Banach topology of W. Thus, effects are "elementary observables." 
An observable is "sharp" if its range is contained in Ex[o, e]w, the set of 
extreme elements of [o, e]w. It is not guaranteed in general that Ex[o, e]w is 
not trivial; nevertheless, in the standard quantum mechanics as well as in 
its operational generalization [in both theories, W = ~s(~f~), the Banach 
space of bounded self-adjoint operators on a separable Hilbert space ~ ] ,  
Ex[o, e] w is the set of all orthogonal projections on Jg. 

The functional representation of W relevant to the definearization pro- 
cedure is done by a map D of W into C ( ~  w*), the Banach space of real 
continuous functions on ~ w *  with the sup-norm. S is the set of states of 
W, i.e., the base of the base normed Banach space W*; ExS is the set of 
extreme elements of S, topologized by the topology induced by the weak* 
topology of W*; and ~ w * ,  denoted in the sequel by ~,  is the weak* 
closure of ExS in W*. The delinearization map D (the Kadison map) is then 
defined by evaluation: 

W ~ a ~  Da~C(~ ), (Da)(a):=a(a), a ~  

The map D is a bipositive linear isometry between W and its image D(W), 
De is the constant-1 function on ~ (Alfsen, 1971 ; Asimov and Ellis, 1980). 

There are good reasons to believe that the quantum logic ~ is a subset 
of Ex[o, e] w. It is customary to assume [1_ = Ex[o, e] w, which is true in the 
case of theories with W = ~ws(~). In the general case it seems that physical 
intuitions concerning quantum logic are better met by the set of projective 
units of W; Alfsen and Shultz (1976) give conditions under which the set of 
projective units coincides with Ex[o, e] w. 

If we take as the starting point of our considerations an abstract quan- 
tum logic [1_, then we cannot apply the delinearization procedure without 
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embedding 0_ in an order-unit space. Such an embedding can be constructed 
in many ways; we will follow Fischer and Rfittimann (1978). Let (E, <, e, ~)  
be an orthomodular poset. We consider the space W' of all additive real 
functions on E, aeW'  iff a<_~b implies a(avb)=a(a)+a(b)  for any 
a, beD_. The space W' is proved by Fischer and Riittimann (1978) to be a 
base normed Banach space; its base S is the set of all states on Q_, i.e., a e S  
iff a :  1_ ~ [0, 1] (the unit interval of  ~) and a is additive on D_. We will 
assume that S is not empty. The Banach predual of W', denoted W, exists 
only if S#C~ (Fischer and Riittimann, 1978, Theorem 2). W is an order- 
unit normed Banach space, and [ can be canonically identified with a subset 
of  the unit interval of W: L~a ~ Cae W, a( r  := a(a) for any a E W ' =  W*. 
Here r is an injection if S separates elements of Q_, and Ce is the order unit 
of  W; the conditions under which r (U_) is contained in Ex[r (be]w, where 
o =  Me, are discussed in Cook (1978). The structure of D_ is preserved under 
(b if Sis  full on [l_, i.e., if a(a)  _< a(b) for all a~S implies a<b, for any a, beD_. 
We will assume that S is full; hence we will identify 0_ with its image under 
(b. Having l_ represented by effects of  W, we can apply the delinearization 
procedure described above to embed W, and L, into C(f~ ). 

According to the physical interpretation of the delinearization pro- 
cedure we want to see f~ = ExS w* as the phase space of a classical statistical 
theory. The basic elements of this theory are then M(f l  ), the base normed 
Banach space of signed Radon measures on f~, and F(f~), the order-unit 
normed Banach space of  measurable functions on ~q (compare Singer and 
Stulpe, 1993). We will identify C(f~) with the corresponding subspace of 
F(f~ ); thus, the delinearization map D is the injection of W into F(f~ ). 

It is known that the Boolean algebra of measurable subsets of  f~ is 
canonically represented by the extreme elements of [o, e]e; thus, the logic D-c 
of the classical statistical theory based on F(f~ ) and M(f~ ) equals Ex[o, e]v 
(compare Singer and Stulpe, 1993). It is easy to see that the delinearization 
map represents Ex[o, e]w by (in general) nonextreme elements of  [o, e]F. 
This suggests that the classical statistical theory resulting from the delin- 
earization of  the original quantal theory has to be an operational theory, 
i.e., its set of elementary observables has to be the full set [o, e]e instead of 
Ex[o, e]~-. Thus, we should devote some attention to the algebraic structure 
of [o, e]r, the logic of the operational classical statistical theory [a similar 
study for the case of  operational standard quantum theory can be found in 
Bugajski (1981)]. 

3. ALGEBRAIC STRUCTURE OF [o, elf 

The set [o, e]r is the set of  effects of the operational classical statistical 
theory based on the statistical duality M ( ~ ) ,  F ( ~ ) .  The notion of 
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observable introduced above can be easily adapted to this case. The minimal 
algebraic structure on [o, e]F that we need in order to define observables is 
the partial algebra ([o, e]F, +,--) with pointwise addition of functions 
restricted to [o, e]p: if a(a) + b(a) N 1 for all a ef~ with a, be [o, e]~-, then the 
pointwise sum a+b belongs to [o, e]e, and if a(a)-b(a)>O for all aef~  
with a, b e [o, e]F, then the pointwise difference a - b  is an element of [o, e]F. 
The partial binary operations +, - correspond to the quantum-logical 
orthoaddition and relative orthocomplementation, respectively. Let us note 
that this partial algebraic structure on [o, elf is well motivated by the physical 
theory. 

The basic partial algebra ([o, e]v, +, - )  generates a rich collection of 
relations and operations on [o, e]r definable in terms of the two operations 
+, - .  Thus the domain of the partial operation " - "  determines a binary 
relation on [o, e]F which is evidently a partial order: a _< b iff b - a  is defined. 
The domain of the partial operation " + "  determines another binary relation 
on [o, e]F: aLb i f f a + b  is defined. The set {btbe[o, e]F, b_ka} for any fixed 
ae[o, e]F possesses the largest element with respect to _<, which will be 
denoted ~a  and called the quasicomplement of a. 

The poset ([o, e]F, <_) is actually a distributive lattice that comes from 
the known lattice properties of  F (~  ). For any a, be [o, elF their lattice meet 
and lattice join are denoted by a/x b and a v b, respectively. It is easy to see 
that (a/x b)(a) =min{a(a) ,  b(a)} and (a v b)(ct) =max{a(a) ,  b(a)} for any 
a e f L  The constant-1 function e is the maximal element of ([o, 8]F,--<), 
whereas the constant-0 function o is the minimal one. The quasicomplement 
~a  can be now equivalently described as e - a .  The algebra ([o, e]F, ^, ~)  
with the order defined by a<b iff a ^ b = a, and the lattice join by a v b = 

(~a  ^ ~b) ,  is a quasi-Boolean algebra according to Rasiowa (! 974). It 
should be stressed that, contrary to the properties of the traditional quantum 
orthomodular orthoposet, the sum a + b does not coincide with the lattice 
join a v b (nevertheless, a + b > a v b for any a, b e [o, 8IF such that a_l_ b), and 
the difference a - b  does not equal ~b A a. Evidently, ([o, e]~, + , - ,  ~ )  is 
not a partial Boolean algebra. 

The distributive lattice ([o, e]~-, <, A, v) is relatively pseudocomple- 
mented, i.e., for any a, b e [o, e]F there exists an element of [o, e]p, denoted 
a~+b, such that for any ce[o,e]p, a^c<b  iff c<_a=-+b. Indeed, a~-+b is 
defined by (a~b) (a )=l  iff a(a)<_b(a), and (a~b)(a)=b(a) otherwise. 
Owing to the presence of the minimal element o in [o, e]F, we can define 
the pseudocomplementation a ~ l a  in [o,e]F by la:=a~o. Thus, 
([o, elF, ̂ ,  V, ~ )  with the order defined by a<_b iff a~b=e ,  and the 
pseudocomplementation a ~ ]a = a ~  o, is a pseudo-Boolean algebra (alias 
Heyting algebra, or pseudocomplemented lattice) (Rasiowa, 1974). Thus, 
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[O, e]F is simultaneously a quasi-Boolean algebra and a pseudo-Boolean alge- 
bra with the same order relation and distributive lattice operations for both 
structures. It should be noted, however, that [o, e]r with its quasi-Boolean 
and pseudo-Boolean structures is not a quasi-pseudo-Boolean algebra as 
defined in Rasiowa (1974). 

Among operations on [o, e]F which could be defined by combining the 
ones listed above, an especially interesting one is the unary operation: 
a ~ l a : =  ]Ha.  It is easy to check that l is an interior operation on the 
quasi-Boolean algebra ([o, e]F, V, ~ ) ,  i.e., the following defining equalities 
(Rasiowa, 1974) hold for any a, b e [o, elF: l (a A b) = la A lb, la A a = la, lla = 
la, le = e. Thus ([o, elF, •, ~,  l) could be called a "'topological quasi-Boolean 
algebra" in analogy to the "topological Boolean algebra" of Rasiowa (1974). 
The operation a ~ m a : = ~ l ~ a  is a closure operation in ([o,e]r,  v, ~). 
Observe that ]a can then be described as the interior of the quasicomplement 
of a: ] a = l ~ a .  

The Boolean algebra IB(f~ ) of measurable subsets of f~ is canonically 
injected into [o, ely  by attaching to any measurable subset its characteristic 
function. Identifying B(f~ ) with its image under this injection, we see that 
B(f~) is exactly the set of extreme elements of  the convex set [o, e]v, The 
injection of B(f~ ) into [o, e]F is a Boolean monomorphism, i.e., it preserves 
the Boolean operations on measurable subsets of fL The relative pseudocom- 
ptementation can be restricted to 8(f~ ) and coincides there with the standard 
operation: iB(f2) x iI~(f~)~(a, b) ~ - - . a v  b. The interior and the closure 
operations both are surjections of  [o, e]~ onto B(f~) and both act trivially 
on B ( ~ ) :  l a = a ,  m a = a ,  for any aelB(D).  The ~(f~) is the only maximal 
Boolean sublattice of the quasi-Boolean and pseudo-Boolean algebra 
over [o, e]e. 

The relation of compatibility, crucial for all studies of  quantum logic, 
can be defined for [o, e] v as well: two elements of  [o, e]F are called compatible 
iff they both belong to the range of  an observable. It appears that this 
relation is trivial for the nonlinear extension of  any quantum theory, because 
any two elementary nonlinear observables (i.e., any two elements of [o, e]v) 
are compatible as a consequence of the formula a ( a )  + b ( a )  - (a A b)(ct)  = 
(a v b)(a) ,  which holds for any pair a, b s[o, 8]F and for all a e~2. 

Let us summarize the above considerations. The delinearized quantum 
theory (or the nonlinear extension of the original quantum theory) is an 
operational classical statistical theory based on the phase space f~ introduced 
in Section 2. The set of  effects (elementary observables) [o, e]v of the opera- 
tional classical statistical theory is the set of  elements of the logic of  this 
theory. The logic of the operational classical statistical theory is the algebraic 
structure ([o, e]v~ q%--, A, e._~) with the basic operations described above 
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and with a rich collection of derived relations and operations such as 
•  <, v, ~, ], l, m introduced above. 

4. ALGEBRAIC PROPERTIES OF D 

It is easy to see that the injection D: IL --, [o, e]F has the following proper- 
ties (for any a, b E[L) : 

(i) D(o) = o, D(e) = e. 
(ii) a<_b iff D(a) <_D(b). 

(iii) aA_b iff D(a)• 
(iv) D(a v b) = D(a) + D(b) for aLb. 
(v) D(~a/x b) = D(b) - D(a) for a K b. 

(vi) D(~a)=~D(a) .  

The listed properties suggest that a natural way to think about D is to 
consider it as a mapping between partial algebras. So the original ortho- 
modular orthoposet (0_, <, e, ~ )  should be considered as a partial algebra 
(1_, e, +, - )  with distinguished element e and two partial binary operations 
+, - defined as follows: for any a, bell  such that a(a)+ a(b)_< 1 for all 
a e ~  there exists an element of  H_, denoted a+b, such that a(a+b)= 
a(a) + a (b) for all a E~;  and for any a, b e D_ such that a ( a ) - a  (b)> 0 for 
all a ~  there exists an element r D_, denoted a - b ,  such that a ( a - b ) =  
a ( a ) - a ( b )  for all a ~ .  Obviously, a+b is the orthogonal sum, denoted 
a v b in the theory of orthoposets, and a - b is the relative orthocomplement, 
denoted ~b A a there. The relations <, •  as well as the unary operation ~, 
can be derived in the partial algebra (D_, e, +, - )  in the same way as in the 
case of  [o, e]F of  Section 3. 

Now we can say that the delinearization map D: 1_ ~ [o, e]F is a mono- 
morphism of the partial algebra (D_, e, + , - )  into the partial algebra 
([o, e]F, +, --) which consequently preserves the derived relations < and • 
as well as the unary operation ~. This is the content of properties (i)-(vi). 
This result should be expected, as all the observables of  the original quantum 
theory should also be observables of the delinearized theory. The last condi- 
tion seems to be a necessary condition for the nonlinear theory to be a 
genuine extension of  the original one. 

Let us observe that the delinearization completely destroys the lattice 
properties of (B_, <) .  The lattice joins and meets eventually existing in the 
poset (D_, <), including the joins and meets of orthogonal elements, are not 
preserved under D (except for trivial cases like a v e, etc.). Thus, the lattice 
properties of  the original quantum logic become unessential when we pass 
to the nonlinear extension. The same concerns an eventual atomicity of 
(H_, <):  the lattice ([o, e]r, A,V) is atomic; nevertheless, D maps atoms of D_ 
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into nonatomic elements of [o, e]F (except for pathological cases of extremely 
restrictive superselection rules). 

It should also be noted that D does not map elements of 1_ on extreme 
elements of [o, e]F (except for elements of the center of 1_) ; thus, the original 
elementary observables are not represented in general by the measurable 
subsets of ft. This is the reason why we have to take into account the full 
set [o, e]r rather than its subset B(fl ) as the set of all elementary observables 
of the delinearized theory. 

Applying the interior operation 1 after D, we get DI := lD, which maps 
1_ into B(fl ) c [o, e]v. Generally, D1 is not an injection, which can be demon- 
strated by simple examples [such as the one described in Davies (1972)], but 
it happens that in the special case of standard quantum mechanics DI is one- 
to-one. The mapping DI corresponds to the Boolean embedding of quantum 
logic constructed by Beltrametti and Cassinelli (1976). It preserves only the 
order and both the maximal and the minimal elements of 1_. Similar proper- 
ties show Do := mD. A discouraging feature of D~ and Do is that they do not 
preserve the partial operations +, - on 1_, so the original observables do not 
survive the transformation of 1_ into B(fl ) done by DI or Do. 

5. INNER LANGUAGE OF THE DELINEARIZED 
QUANTUM THEORY 

It is well established that physical theories (at least some of them) 
contain semantic and logical structures, classical ones only in the case 
of standard classical mechanics. One of the ways of extracting the inner 
language of a physical theory, following from the work of Birkhoff, yon 
Neumann, and Finkelstein, is described in Bugajski (1982). The consider- 
ations of the preceding sections make it possible to apply the extraction 
procedure of Bugajski (1982) to the case of the operational classical statist- 
ical theory (OCT for short) appearing as the result of the delinearization of 
a quantal theory. 

According to Bugajski (1982), we identify [o, e]vas the set of all proposi- 
tions (in the semantic sense) of the inner language of OCT. The algebra 
([o,e]r, +,--,  ^, =-,) should be seen now as the semantic algebra of 
IL(OCT)--the inner language of OCT. The set ~ is to be identified with 
the set of possible worlds of the arising semantics, or with its valuation 
space (compare van Fraassen, 1971). The obtained semantic structure pro- 
vides an example of the Banach-space semantics as described in Bugajski 
(1983). 

The algebraic operations on [o, e]r should be considered as semantic 
counterparts of sentential connectives of IL(OCT). Some of them show 
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properties similar to those of sentential connectives of known formal lan- 
guages. Thus, e.g., the lattice operations A, v over [o, elF should correspond 
to disjunction and conjunction, respectively, whereas ~ corresponds to a 
kind of negation. The "topological" operations l, m are to be interpreted as 
semantic images of modal operators of necessity and possibility, respectively 
(Rasiowa, 1974). The operation ]= l~ represents a kind of"strict negation." 
The pseudo-Boolean structure of [o, elf shows that IL(OCT) contains a 
fragment syntactically identical with a language of intu~tionistic logic 
(Rasiowa, 1974). 

The delinearization map defines a translation of the inner language of 
the original quantal theory IL(OQT) into IL(OCT). The translation does 
not change the valuation space D, but the algebraic properties of D show 
that the conjunctions and disjunctions of IL(OQT) are not preserved under 
the translation, whereas the negation of IL(OQT) is translated into the 
"quasinegation" of IL(OCT). 

6. RELATION TO H I D D E N  VARIABLES 

The theory resulting from the delinearization of a quantal theory is a 
genuine classical theory in its operational generalization, which seemingly 
contradicts anti-hidden variables theorems. All such theorems refer, how- 
ever, to a Boolean embedding of the original quantum logic. Physical intui- 
tions behind it imagine ~ as a subset of the Boolean algebra of measurable 
subsets of a phase space of a classical statistical theory. The successful reali- 
zation of the hidden variables idea should then provide a mapping which 
transforms sharp quantal observables into sharp classical observables. Such 
a map is known to be impossible, which has been demonstrated in many 
ways. A typical result of this kind is: There is no injection H of (IL, +, - )  
into a Boolean lattice ([B, e, A, ~) such that H(e)= e, H(a + b) = H(a) v H(b) 
for all, a, b such that a + b is defined, H ( a -  b) = H(a) A H(~b)  for all a, b 
such that a - b  is defined (see, e.g., Zierier and SchIesinger, I965). Our map 
D meets all these conditions simply because it maps U_ into the non-Boolean 
algebraic structure of [o, elF described above, which is the logic of classical, 
nevertheless operational, statistical theory. The root of all the impossibility 
theorems for classical embeddings of quantal theories is the unnecessarily 
restrictive condition demanding that quantal sharp observables should be 
represented by classical sharp observables. 

On the other hand, it seems that our delinearization procedure does not 
fit well the idea of hidden variables. The adherents of the hidden variables 
reinterpretation of quantum mechanics want to explain quantal probabilities 
as resulting from classical statistics, so they imagine quantal pure states as 
nontrivial probability measures on a phase space of the hypothetical hidden 
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variables theory. Such a representation of quantal states appears possible, 
but it does not provide any Boolean embedding of the quantum logic [for 
a short review and summary see Bugajski (1991)]. From the point of view 
of the delinearization procedure, the situation is somehow opposed: the 
classical embedding of a quantum theory provided by the Kadison map 
shows that all specific quantal peculiarities result from restricting the set of 
observables of a classical operational theory. 
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